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Introduction

Problem Set

This project will focus on prediction tasks regarding Knowledge Graph, which is

a formally structured type of data. Normally a knowledge graph consists of a number of

“tripes” in following form:

(head, relation, tail)

in which relation represents how head is related to tail. For instance:

(grandma, is_mother_of, papa)

Both head and tail are considered as “entities”. In this project we concern about

representation learning on knowledge graph, which aims at learning meaningful vector

representations for both relations and entites, and thus address further challenges on

knowledge graphs such as verifying unseen triples and inferring new triples. For example:

(grandma, is_mother_of, papa) ∧ (grandpa, is_husband_of, grandma)

⇒ (grandpa, is_father_of, papa)

In this project we will build a set of neural networks to learn those representations for

prediction task on both entities and relations (i.e. given any two, predict the left one).

Related Work

TransE (Translated Embeddings) This approach was inspired by the

parallelogram analogy discovered in representations learned in former methods. As a

typical example, for entities king, queen, woman, man, the followinig relation of their

learned representations was found:

king − man = queen − woman
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Figure 1. Parallelogram Analogy

Hence, TransE leverages this property directly and assigns the following objective

for representations of all triples:

h + r = t

in which h, t refer to representations of head, tail and r refers to representation of

relation. Under the assumption of parallelogram analogy, representations of entities are

affinely “translated” by those of relations. All representations are learned/optimized

regarding this objective with gradient descent or other optimization methods. No neural

network is involved

One of the limit of this model can be its disadvantage on representing 1-to-n or

n-to-n relations. In this project we will try to resolve this through introducing neural

networks.

VAE (Variational Auto-Encoder) This deep encode-decode method is improved

upon auto-encoder. Basically, VAE introduces ramdom disturbance on encoded vectors,

which is observed to force the smoothness of the latent representations. This property

should help address entangled representations as were observed in Project 4.
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Figure 2. VAE

Just like auto-encoder, VAE is also self-supervised, aiming to decode original inputs

from encoded latent representations, depicted by the objective:

d(e(x) + ϵx) = x

in which d(·) stands for the decoder, e(·) stands for the encoder, x stands for the input,

and ϵx stands for the random disturbance to the latent representation whose scale relies on

x. Decoder, encoder, and the noise generator are all learnable deep neural networks.

Method

In this project we propose a novel model, “Variational Auto-Transcoder

(VAT)”, fusing the strength of TransE and VAE, that is, meaningful parallelogram

analogy and less entangled deep representation, in order to alleviate issues of both models.

In specific, instead of directly assigning vector representations to entites or relations, we

decide to map entities and relations into and from the latent vector space with variational

auto-encoder. Ideally, in this way, our model will be capable of learning both smooth and

meaningful representations for entities and relations, enabling effective “translations” in

the latent representation space. Basically, the smoothness guaranteed by variational
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Figure 3. Variational Auto-Transcoder (VAT)

mapping is expected to reduce the entanglement of learned representations, which results

in VAT’s better understanding of translation. Meanwhile, the introduce of deep decoder is

expected with better capability of understanding translated representations for inference.

Furthermore, as TransE being in form as a look-up table of vector representations

for entities and relations, the process to make an inference on entities/relations with

TransE would typically be:

1. Get the translated (predicted) representation. For example: (h + r) (predicting t)

2. Check all the entities/relations and propose the closest one

The process can be rather time-consuming as number of entities/relations grows enormous.

Regarding this issue, a key advantage of VAT is to directly map latent representations

towards probability vectors which specifies confidence for each entity/relation with

decoder. Once the vectors are prepared, predicted entities/relations will simply be told by

the largest elements in the vectors, which would be much more efficient.
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Experiments and Results

As experiments on our model, we trained and tested on three datasets, namely

FB15K, FB15K237, and WN18RR, drawn from large scale knowledge bases Freebase and

WordNet. The original scales of these datasets are too enormous for our networks which

were implemented from scratch thus without hardware accelerations. Hence, we filtered for

a limited number of entities in each dataset accordingly and kept only relations and

samples that were associated. Sizes of the filtered datasets are as follow:

database version (filtered) entities relations samples

Freebase FB15K 200 226 1408

Freebase FB15K237 250 122 1392

Wordnet WN18RR 500 10 400

All neural networks in VAT were in depth 4. The learning rates for both models

were set as 0.006. Both models were trained for 50 epochs and then tested on predicting

entities or relations in unseen triples, for example, (h∗, r∗, ?), on each dataset.

Comparisons of their performances are as below:

database Freebase WordNet

version FB15K FB15K237 WN18RR

metrics mean rank (%) top 10% (%) mean rank (%) top 10% (%) mean rank (%) top 10% (%)

TransE (34, 24, 22) (28, 49, 51) (43, 16, 22) (16, 63, 57) (65, 30, 39) (0, 36, 9)

VAT (35, 20, 23) (21, 47, 47) (45, 18, 19) (10, 55, 57) (56, 21, 36) (18, 64, 45)

Three percentages in triples represent prediction metrics on head, relation, and tail

respectively. Mean rank gives the mean probability ranking of target entity/relation in

percentage, while top 10% states the partition of predictions in which such rankings are

within top 10%.

Discussion

Overall, the two models perform closely on both databases. TransE performs

slightly better than VAT on Freebase, while VAT shows more advantages on WordNet.
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As for analysis of such result, tracing back to features of datasets, filtered Freebase

has more relations, more number of training samples, and less entities. Since TransE didn’t

introduce artificial neural networks, its training and convergence was faster, and such

difference would be enlarged in datasets which are with more samples while being

complicated in relations. With more developed deep learning settings, VAT should have

the potential to reach the same or even better performance as TransE on more complicated

data, which is supported by VAT’s better capability on WordNet. WordNet is much

sparser in relations, which makes them more challenging to predict, since a single relation

will represent translations between a larger number of different head-tail pairs.

Meanwhile, as was stated before, inference process of VAT can be more efficient

since predictions are directly made by mapping instead of retrieving. Furthermore, the

latent representations learned by VAT which are capable for mapping brings broader

probability to the model, such as to transfer the representations for more downstream tasks

involving neural networks.

In conclusion, for this project, we propose Variational Auto-Transcoder (VAT)

which shows close or better performance as the classical baseline, TransE, while being more

efficient and flexible for inference, on modeling knowledge graph under our computational

limitations. As improvements, introduction of more deep learning techniques and

frameworks is expected to result in a potentially better performance through helping

resolve the convergence difficulty of artificial neural networks.
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